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The paper considers diffuse reflection at the boundary with nonconstant bound- 
ary temperature and unbounded velocities. The solutions obtained are proved to 
conserve mass at the boundary. After a preliminary study of the collisionless 
case, the main results obtained are existence for the Boltzmann equation in a 
"DiPerna-Lions framework" with the above boundary conditions in a bounded 
measure sense, and existence together with uniqueness for the BGK equation 
with Maxwellian diffusion on the boundary in an L :~ framework. 
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1. I N T R O D U C T I O N  

This paper considers initial boundary value problems for the Boltzmann 
equation and the BGK equation, when the behavior at the boundary is 
governed by diffuse reflection, sufficiently similar to Maxwellian diffuse 
reflection for formal conservation of mass at the boundary. 

For the corresponding collisionless problem a great deal of informa- 
tion for large data is available; see, e.g., refs. 11 and 6 for details and 
references. As for the nonlinear Boltzmann equation, a first treatment of 
the present diffuse boundary behavior in a DiPerna-Lions setting was 
given by Hamdache. 17~ This was later extended II) in several directions 
including the case of general diffuse reflection with varying boundary tem- 
perature under a restriction to bounded velocities. For an extensive discus- 
sion of the background and references for the problem we refer to ref. 7. 
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In the present paper we introduce a class of boundary operators (in 
generality intermediate between those in ref. 1 and pure Maxwellian diffuse 
reflection) for which the restriction to bounded velocities can be removed 
also when the boundary temperature is allowed to vary. In a preliminary 
discussion, a collection of relevant (old and new) results on the problem 
with known gain term and collision frequency is presented. This is followed 
by a study of the Boltzmann case. The paper ends with an analysis of the 
situation for the BGK model. 

The problems considered in this paper are all of the type 

af ~ + ~ ' V x f = Q / ~ ,  te(O,T), xeg2, ~ 3  (1.1) 

f(t,x,~)=Kf=fr o K ( ~ ' ~ , t , x ) f t ,  x,~')d~' (1.2) 

te(O, T), xec~I2, ~ . n ( x ) > 0  

f(O,x,~)=fo(x,r xe t2 ,  ~ e R  3 (1.3) 

Here (2 c R d, d~< 3, is open with a smooth boundary aI2 (of Lyapunov type 
is sufficient). The unit inward normal to ~12 is n(x), and the measure of t2 
and 0/2 are finite. 

A classic example of (2) is Maxwellian diffuse reflection 

K ( ~ ' ~  ~; t, x ) =  1r n(x)l M(t, x, ~) (1.4) 

where 

M(t, x, ~) = (2n) -z 02 exp( - 0 . 5 0  Ill 2) (1.5) 

with prescribed inverse temperature O(t, x) such that 

0 < c  I <O(t, x) < c2 < oo 

In the preliminary Section 2, a reformulation of the problem (1.1)-(1.3) is 
introduced together with definitions and notations. Section 3 collects the 
properties needed for the boundary traces. Section 4 introduces the type of 
diffuse reflection operators used, here referred to as regular diffuse 
operators, and presents some of their properties. In Section 5 variants of 
the problem with known gain term and collision frequency are discussed. 
This is then used for the proof of existence of solutions to the regular dif- 
fuse initial boundary value problem in the case of the Boltzmann equation 
in Section 6, and of existence and uniqueness for the corresponding BGK 
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problem in Section 7. In particular, the latter section contains the observa- 
tions needed to confirm the statement at the end of ref. 8 in the case of the 
boundary condition (1.4). 

2. P R E L I M I N A R I E S  

For the convenience of the reader we collect notations of a standard 
nature connected to our problem in the beginning of this section. We have 

r =  (/,x, ~) 

is an element in the space 

~ = ( 0 ,  T) x O x R  3 

Lower-dimensional regions of interest are 

r �9 = { r e ~ ;  xeOO, ~-n(x)X O} 

F ' = { r ~ ; t = s }  

with characteristic functions 

X • = I t •  , 

The boundaries of @ are 

O~ + = F  + w E  ~ 

X s = I F s  

0 ~ -  = F -  w F  r 

Define the backward and forward stay times as 

t + = / + ( r ) = i n f { s > O ; x - s ~ O Q }  

t -  = t -  (r) = inf{s > 0; x + s~ ~ dO } 

with the related quantities 

s + ( r ) =  min{t, t+(r)} 

s - ( r )  = min{ T -  t, t - ( r )}  

Reparametrizations of ~ employing these quantities are 

~ •  = {(s,  r); r ~ O~  • s e  ( - s + ( r ) ,  s - ( r ) ) }  

Let da denote the usual measure on O0, and 

d a ~ = ~ l ~ . n ( x ) l d t & r d ~ ,  r e F  • 
(dxd t ,  r e F *  for s = O  resp. T 
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The following scalar products are used: 

( f , g )  = f  f g d r  

=re f g d a ~  ( f ' g ) +  ~_~+_ 

( f '  g)  ' = ~a • # ' f ( t ' x ' ~ )g ( t ' x ' ~ )dxd~  

(f, g) = I~3fg d~ 

(f, g) + = ~n3fgz-+ I~" n(x)l d( 

Some related spaces are 

L p+ = LP(O~ +, dtr +- ) 

LP(F + ) = LP(F +-, de +- ) 

0 
W P = { f ~ L P ( ~ ) ; / k f s L P ( ~ ) }  with A = ~ +  ~ -V.,. 

We also use the space Jr • of  a-finite measures defined on the e-algebra 
~+- of Borel sets from F +. The notation (q~, # + ) _+ is used for the corre- 
sponding integrals 

(~P, #+ ) +- = fr._ (P d# + 

with ~o~ Co(F+-),/1-+ ~ Jt  '+. 
The mappings 

R+-: @+- ~ 

with 

Re(s,  r )=  R(s, r )=  (t + s, x + sr ~) 

define characteristic coordinates (s, r) for functions f defined on ~, 

f•(s,  r)=fr (s)=f(R(s,  r)) 



Diffuse Reflection at Boundary for Boltzmann Equation 1055 

Also, for functions q~ defined on O~ + 

(R-+~o)# (s, r) = q~(r) 

i.e., an R -+ extension of ~0 along characteristics. For feL~(~) 

f f(r)dr=fo~+[f~-~"f'(s,r)ds]da~ + 

The trace studies will use 

ITr l<~p<~oo 

Here the trace operators y -+ are defined by 

7-+f= lim f#(s,r) (2.1) 
s ~  -T- s + ( r )  

The following sort of Green's formula holds~m~: 

( f ,  g ) -  - ( f ,  g ) +  = ( f ,  Ag )  + ( g , / k / )  (2.2) 

for f~ 'P,g~H/; ' ,  l ~ p < o o .  
The collision operator is Q with gain and loss term Q +, resp. Q - ,  

Qf =Q+f-Q-f, Q-f =fv(f) 

Sometimes Q + and v are given functions independent of f 
Given r E ~ ,  T, s e  [ - s + ( r ) ,  s - ( r ) ] ,  (1.1) can formally be rewritten as 

f#(s,r)=f#(~,r)H('r,s,r)+ (Q+f)'~(z,r)H(z,s,r)c~ (2.3) 

with 

Also set 

FI(v;r,s,r)=l-l(T,s,r)=exp -- v#(z,r)dz 
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The following conversion of (1.1)-(1.3) will frequently be used. Set 

Z={fo ,  g,G,v} 

forfo:  s  g: F+- - 'R ,  G: ~--*R, v: ~--*R +. Using (2.3)with 
r ~ 0 ~  +, r=0 ,  s e  [0, s - ( r ) ] ,  we find that (1.1) formally gives 

f = V(Z) 

and 

f; V~(Z;s,r)=II(O,s,r)[fo(r)x~ Ge(z,r)II(z,s,r)dz 

(2.4) 

and 

We thus have the system 

f =  V(fo, f +, O+f v(f)) 

f +  = .~( fo ,  f +, a+f  v(f)) 

for f :  ~--* R , f+ :  F + --. ~. 

Here 

f +  =X+y+f  

.,U(Z, r) = fr ..,~x) < o K(~'-+~;t'x){ [f~176162 

+ f+#(- -s  +', r ')X+(x--s+'~')]  H(--s +', O, r') 
o } 
_ Ge(y,r')II(y,O,r')dy d~' "t- I ~+. 

( t , x ,~ )=reF § r'=(t,x,~'), s+'=s+(r ') 

(2.6) 

(2.7) 

(2.8) 

where 

Z=( fo , f+ ,Q+fv ( f ) ) ,  f +  =X+7+f  

Using (2.3) with r replaced by r '=  (t, x, ~'), s=0 ,  z=  -s+(r ' ) ,  and r ' ~ F -  
formally gives 

f +  = .,U(Z) (2.5) 
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Conversely, if ( f , f + )  solves (2.7)-(2.8), then formally X + ~ + f = f  + 
and f solves ( 1.1 )-( 1.3 ). Let 

~O ~ L~(~) ,  rIEL ~ -  , tO~L ~+ (2.9) 

with compact supports. Green's formula (2.2) gives 

(~b, V(Z) ) = (Z~ X+f +, ~,+f +, ~+ V*(v, dg)) + + (Q+, V*(v, ~O)) 

(2.10) 

(q, v ( z ) ) _ = ( x ~  + ( Q  +,V*_(v,q)) (2.11) 

(tO, J { ' ( z ) ) .  = (z~ + x+f  +, ~,+oU*(v, tO))+ + (Q+,  J{*(v, tO)) (2.12) 

This is so, because 

f~ 
- lr) 

V * ( v , ~ ) # ( s , r ) =  ~b" (T, r)/7(s, z, ~) dz (2.13) 

solves 

A g - v g =  - ~ ,  ),-g = 0 

and 

solves 

V*_(v, ~)~' (s, r ) = / / ( s ,  s-(r) ,  r)(R-r/) ~ (s, r) 

Ag -- vg = O, ~ -g  = q 

Finally, setting r/= J('*~0 in (2.11), we obtain (2.12) with 

oU*(v, tO)~ (y, r') = H(y, O, r ' ) (R-  (K'to)) ~ (y, t ') 

where 

(2.14) 

(2.15) 

K*to(r') = f to(r) K(~' --* ~; t, x) I~' n(x)[/l~', n(x)l d~ (2.16) 
.n(x)>O 

Set tO = 1 in (2.12) and use (2.15) to get the following result. 

k e m m a  2.1. Assume that v~L~oc(~), v>>.O, 

K'tO >/0 for tO>J0, sup(K*l)~<g~< 1 (2.17) 
F -  

Then o,~ is continuous from Ll(f2 x R 3) x L~(F + ) x L t (~ )  into LI(F +), 
and 

II X(Z)II  L'lr+ I~< s  liT011L'Ia • R~)+ IIf + Ilz,w*)+ II Q+ [I L'~)) 
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Let us also assume that 

K*: Co(F+)--*Cb(F - ) 

Then we can define Kp - e .~' + for measures p - e J g -  through 

(tp, K/.t- ) + = (K*~o,/.t- ) _ 

The boundary condition (1.2) for measures in our case becomes 

/.z + = K / t -  (2.18) 

By the Lebesgue decomposition theorem there are 

p ~ J / l  • N + - c F  +- 

w i t h  a • ( N  • ) = 0 and measurable function f +  = d,u •  + such that 

/ a+ (A)=IAf •  da • +Iz+(A) 

U+(F• 

for all measurable sets A c F • 
We shall in the Boltzmann equation case consider diffuse reflection 

operators for measures p• satisfying (2.18) together with 

~>?• (2.19) 
da • 

D e f i n i t i o n  2.1. f i s  a mild solution of (1.1)-(1.3) if 

f ~L ' (~ ) ,  f>_.O, (Q• eL'([O,s-]) (2.20) 

f # ( s , r )= f# ( z , r )+  Q#(z, r) dz, 0~<s<r~<s - ( r )  (2.21) 

x ~  fo 

for a.e. r ~ 3 ~  +, and there are p• ~,/#• satisfying (2.18) and (2.19). 

De f in i t i on  2.2. f is a solution in exponential multiplier form (or 
exponential solution for short) of (1.1)-(1.3) if 

f ~  Ll(_~), f > ~ O ,  v(f)~L~oc(~) (2.22) 

f#(s,r)=V#(fo,~+f,Q+f,v(f))(s,r) ,  0~<s~<s-(r) (2.23) 

for a.e. r~O~ +, and if there exist p+ E J [  • such that (2.18)-(2.19) hold. 
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Renormalized solutions are defined similarly. Equivalence relations 
similar to those in the Cauchy problem t4~ hold. In particular, assume that  

0 ~<fe  L ' ( ~ ) ,  v(f)~L~oc(~) 

Then f is a mild solution if and only if f is an exponential solution. With 
it, + = f +  da +-, it follows from (2.18) that 

U,. + = (K/t ; )~ + K/J,7 

i t :  = ( KIL7 ).~ 

Hence 

3. ON THE TRACES 

f +  >1 Kf  - (2.24) 

It follows from (2.3) that any exponential solution of (1.1)-(1.3) has 
traces 7-+f, defined a.e. on aD -+ by (2.1). For  "nice" solutions the trace 
operators are determined in the usual sense of the trace theory. Namely, let 

Lemma 3.1 .~,o~ 

such that 

7+-f=flo~ for f s C ( N )  (3.1) 

There exist continuous extensions of (3.1) 

s~7+:  WI- - .L  '+ 

I<s +, )' -v-f> -v - <f, 1 >l ~< T IIAfll L'~v~ 

Proof. Set g+(s, r ) = s + s + ( r ) .  Use (2.2) to obtain 

{ s+, Y- f>  - = <f, 1 > + ( s + s  +, A f >  

< s - ,  7+f>  + = ( f ,  1> + < s - s - ,  A f>  

The lemma follows. II 

R e m a r k .  The operators (3.1) have continuous extensions ~1~ 

7+: l,p '-v _.. L l +  

and 
Ib ' -f l lL,-  = Ih'+fl[L'+ + <Af ,  1 > 

~'--traces are also of interest. The following result holds. 

(3.2) 
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Lemma 3.2. With A =~Vx,  ,~-+ = lr set 

IT,"= { f ~  W'(I2 x ~3); 1~12f, ~Af~L'(g2 x ~3)} 

E j• = LI(012 x R3,)~ + 14-n(x)l dad,) 

The operators 

~• for f ~ C ( ~ x R  3) 

have continuous extensions 

I~.n(x)l ~-+: ff,1__./~.1_+ 

ProoL Take f e f f  "j and set g=-u.;~,  where u6(C1(~) )  3, 
u(x) = n(x) for x e dl2. By approximation Green's formula (2.2) implies 

- ~oa• dcrd~= <f Ag)o+ <g, A f ) o  

and so the iemma follows. II 

Remark. Similarly, consider a nonnegative function f e  WJ(~) with 
r  I;?,lfeL~(FS), s = 0 ,  T, and with 

(Af,  ~ , )=0 for r  1, l, Ill 2 (3.3) 

It follows by Green's formula (2.2) that for g = - ~ .  u with u as in the proof 
of Lemma 3.2, 

<f, X + II" n(x)[ > + + ( f ,  z -  I~" n(x)l > _ 

~< c[</, 1~12> + </, I l l > r +  </, Ill>o] (3.4) 

If (3.3) does not hold, then the term <Ill, IAf l  > should be added to the 
right-hand side. 

4. REGULAR REFLECTION O P E R A T O R S  A N D  
A PRIORI E S T I M A T E S  

In this section we study a class of boundary operators for which (1.2) 
holds with equality and conservation of mass flux. Restrictions like the 
ones below on K* seem necessary to control various fluxes at the bound- 
aries, when these are not isothermal. Still stronger restrictions are needed 
if more regularity is required at the boundary, as for the BGK study in the 
final section of the paper. 
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Let K* be defined by (2.16). The assumptions (2.17) already control 
the sign of the gas density and prevent injection of mass from the bound- 
ary. Control of mass, energy, and entropy flows for the outgoing distribu- 
tions is provided by the following conditions: 

(Ko) 
(K,) 
(K2) 

(K3) 

(Sign control) K*~b >/0 for ~, >/0. 
(Mass condition) K*I = 1. 
(Spreading condition) There exists K 2 > 0 such that 

K* I ' 'n(x)l  >~K2 

(Energy condition) There exists K3 < oo such that 

K* 1,12 ~< K3 

(Entropy condition) There exist K4< oo } and c~e l-0, 1) such (K4) 
that for every f ~  L ' ( F -  ) with f>~ 0, 

Kf, In Kf  \ 
( f--~-~+ / + - c~ I?I - <-% K 4 ( q ~ + q) 

Here 

f 
/-1- -- < x-f, In (f--~-~_) _, q : = < x •  14l:>• 

q= <l"nl, x+f>+ + <14"nl, z - f > -  

(Ks) Spreading condition) There exists a decreasing function 
$ e C((0, co), (0, 1)) such that 

K*I,- >s >~ $(s) for 0 < s  

Notice that for Maxwellian diffuse reflection 

K* I' .n(x)l = CO(t, x) -1/2 

K* 1412= CO(t, x) -t 

K f  (2 In O C < Kf, In (f---f,~+ > + = 2 - ~ n - )  (Z-f '  1 ) 

with absolute constants C. 
On the other hand, (K2) excludes specular and reverse reflection 

operators. The condition (K4) holds under (K2) together with 

<Kf, In ~ >  + , K4<f, 1+1,12)_ 
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The spreading condition (Ks) introduces some restriction on Of 2, essen- 
tially excluding exotic domains for which the measure is zero of the part of 
the boundary available from some point x. It may be used for investigation 
of slowly decreasing functions f with (lr f ) =  oo (see Theorem5.2 
below). 

Set 

mj(t) = ( f ,  I~lJ), 

H(t) = (f,  l n f ) ,  

H -+ = (z+f,  In f )  + 

In the following lemmas, some properties of solutions to (1.1)-(1.3) 
connected to (K,)-(Ks)are presented. 

i .omma 4.'I. Assume that (Ko)-(K 3) hold. Let f be an exponential 
solution of (1.1)-(1.3) with equality in (2.19) and 

/L~- =0,  0~<(1 + 1r mL;(~)  

0 ~< (1 + 1~12)fo ~ Ll(g2 • R3), v ~ L~oe(.~) 

If (Q(f), 1 ) = 0 for f an exponential solution, then f satisfies 

too(t) = too(0) (4.1) 

If (Q(f), i f ) = 0  for f an exponential solution and ~,= 1, ~, I~12, then f 
satisfies 

supm2(t)+q~ +qo +q~ +q~_ <~C,(T) (4.2) 
t<~ T 

with C , ( T ) > 0  only depending on fo and K2, K3. 
If ( Q + ( f ) ,  1) ~<c, +c2( f ,  1), then 

too(t) <~ C2(T) (4.3) 

with C2(T)>0 only depending on fo, c;, and c 2. 
If (Q+( f )+Q-( f ) ,  1+r 1-{'-~2), then (4.2) holds 

with C,(T) only depending on fo, K2, K3, r and c4. 

ProoL The condition (K;) implies 

qo- =qo + 

and so if (Q, 1)=0,  then by (2.2) 

'no(T) = mo(0) 
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If (Q, 1~12)=0, then analogously 

mz(T) + q~- - q~- = m2(0) 

It follows from (K2) that 

(Kf, I~" nl ) + = (z-f, K* 1~" nl >_ >1 K2qo 
By (3.4) this implies 

(x-f, 1)-<.CII:ma(t)dt+m,(T)+m,(O) ] 

if (Q, ~)=0.  Condition (K3) gives 

q~ = (Kf I~lZ)+ = ( f ,  K* 1~12)_ ~< K3(x-f ,  1 ) _  

Together (4.4)-(4.6)imply 

m2(T)<.C[f:m2(t)dt+ml(T)+ml(O)]+m2(O) 

Together with the inequality 

m,(T) ~< t:m2(T) + C(E) mo(T) 

this gives 
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(4.4) 

(4.5) 

(4.6) 

m2(T) ~< C(T) 

by Gronwall's lemma, and (4.1) follows. The other cases are proved 
similarly. II 

Lemma 4.2. Keep the conditions of the previous lemma and 
assume in addition (K4), together with 

(fo, In fo) e L'((2) (4.7) 

(Q(f),lnf)<~O, (Q(f) ,  ~) = 0 for ~, = 1, ~, 1~12 (4.8) 

Then f satisfies the inequality 

f -(Q(f),lnf)+H(T)+(x+-f, ~ )+<<.C(T) 

with C(T) > 0 depending only on Jo and on K2, g3, g4. 

(4.9) 
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Proof. Due to (K~), whenever H -  and H + are defined, 

f H--H+=(x-f ,  ln ( f ,~_)_-(z+f,  ln (f--~--~+)+ (4.10) 

Hence using Green's formula (2.2) and approximation, we have 

-(Q, lnf)+tt(T)+ x-f, ln ~<H(0)+ x§ if, 1)+ 
- -  + 

(4.11) 

Since mass and energy are bounded by (4.1)-(4.2), Carleman's lemma c3~ on 
lower bounds for H can be applied to give 

-H(T)<~ C(T) 

with C(T) depending on fo, and CI(T ) of Lemma 4.1. Also (4.10)-(4.11) 
together with (K4) and Lemma 4.1 imply 

-(Q, Inf>+<x-f, ln(f,~_>_<~C(T) 

For any measure/1 on R 3 and any g > 0 with (1 + I~lZ)(g + e -e:) E L~(R3), 
it holds that 

- fR3glnglg<ldp<~C+fa3(l+l~12)gdl.t 

In particular, g=f/(f, 1)• dp=g  • [~ .n[ d~ gives 

(x• l n ~ ) f  _+i> (z• l l n ( f , ~ +  ) _  •  C(l+q~+qf) 

This together with (4.10)-(4.11) and (K4) gives 

f 

I.emma 4.3. Assume that (Ko), (KI), and (Ks) hold, and that 

0 ~<fo e L1(12 x R3),  Q+eLl(~) 
Then any solution of (2.20)-(2.21), (1.2)-(1.3)in Ll(~)  with v f~L~(~) 
satisfies 

qg(T-t) y• ~Ll(F • 
with ~o(s)=sr and ~, defined by (Ks). 
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Proof. By hypothesis f,/'kf~ LI(~). Hence by Lemma 3.1 

s - f  + e L  1+ 

By (Ks) 

Finally, 

IIs-~,+fllz,,r§ = <X+s -,  gy- f>  + 

= ( ; ( -y-f ,  K ' s -  )_ >1 (Z-q~(T-t) ,  y - f ) _  

( X - ~ P ( T - t ) , y - f ) _ = ( X + c p ( T - t ) , Y + f )  + I 
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In addition, 

(f ,  1 ) , =  (f ,  1 )o if (Q, 1)=0 (5.3) 

Proof o/ -Theorem 5.2. An existence result is proved in ref. 1 for 
general kernels only satisfying (Ko), (K~). In that case 

inf ( f ,  1 ), ~< (fo,  1 )o 
t<~ T 

5. P R O B L E M S  W I T H  G I V E N  Q+ A N D  v 

In this section we discuss problems with Q + and v given. The principal 
results are contained in the following two theorems. 

Theorem 5.1. Assume that (Ko)-(K3) hold. Consider the problem 
(1.1)-(1.3) with fo, Q+, and v given and positive together with 

( l+l~lZ)fo~Ll( f2xRS),  (1 + 1~12) Q+ ~LI(~),  v~L~oc(~) 

It has a unique, nonnegative, exponential solution with /if  =0  and 
equality in (2.19). Moreover, Q E L~(~), and 

(1 + I~1 z) y+-f~L ~+- (5.1) 

(1 + l~[2)fE C([0, T], Lt(s x R3)) (5.2) 

Theorem 5.2. Assume that (K0), (Kt), and (Ks) hold. Consider 
the problem (1.1)-(1.3) with fo, Q+, and v given and positive, and 

fo ~ Ll(g2 x 6~s), Q+~LI(~),  v~L~oc(~) 

It has a unique, nonnegative, exponential solution with equality in (2.19) 
and 

/~) =0, f E  C([O, T], L'(I2 x II~S)) 
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holds when (Q, I) = 0, instead of (5.3) in our case. The constructions in the 
existence proof below are used in the following uniqueness proof. 

Let ), ~ (0, 1). By Lemma 2.1 the operator 2 J :  +, where 

J{ '+f+  = 3if(0, f + ,  0, v) (5.4) 

is a contraction in L ~ +. Hence the equation 

f §  = 2Jt"+f + + o,~(f0, O, a + ,  v) 

has a unique solution in L 1+. Denote by ~':. the solution operator 

~: = ( I -  ).,gU + ) - ' 

Clearly, 

f:" = V(fo, ~:.'~f'(fo, O, Q+, v), Q+, v) (5.5) 

is an exponential solution of (1.1)-(1.3) where K is replaced by 2K. 
+ 2  Moreover, /a;- = 0  for the solution f:" and (2.19) holds with equality. 

Using the equivalence between exponential and weak solutions, t4~ we can 
apply Green's formula (2.2). With g = 1 this gives 

Ilfa(T)IIL',a• Ilvfall L.,~, ~ < Ilfoll L'.~ • IIQ+IIL',~ (5.6) 

Taking a sequence 2 T 1, we obtain a nondecreasing sequence f~'. Hence by 
(5.6) the limit f in L~(~) is a limit in L 1 and a.e. sense. 

By Lemma 3.1 and (5.6) 

<s • 7 ~:f> ~ <~ CZ( II Q + II L ' I~ + IIf011L'.~ • R'I) 

f is a solution of (2.20)-(2.21), (1.2)-(1.3) with Q~L~(~).  Lemma4.3 
implies that 

q~(T- t )y  +-f 6 Ll(F +- ) (5.7) 

Hence f is an exponential solution. For (Q, 1)= 0, (5.3) follows from (5.7) 
and (2.2). Integration of the equivalent mild form gives 

IIf ~ (s) - f  ~'(r)ll L,t~ • R31 

<~ f f  <iQ~'(z)l, l >._dz + I[ dz + f] dz f~ada fR3yf l~.nl d~ (5.8) 

Hence f ~  C([0, T],  Ll(I2 x R3)). 
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One way of obtaining an exponential solution with #~ =0  and 
equality in (2.19) is the following. Define 

f + " =  ~ (J{+)JJ( ( fo ,  O, Q+, v) (5.9) 
j = O  

+ tl f ' =  V(fo, f , Q+, v) (5.10) 

Clearly, 

O<~f"- '<~f"<~f  (5.11) 

where f is the solution described above. Hence there exists f e  L~(~), such 
that f , - ~ f  in L~(~) and a.e. Evidently f is an exponential solution, and 
for any nonnegative exponential solution F with / ~  =0  and equality in 
(2.19), 

_f~<F (5.12) 

In this sense _jr is the minimal solution. 
We next prove that the solution is unique in the class of exponential 

solutions with equality in (2.19) and/~fi =0. Green's formula (2.2) can be 
applied to any such solution F giving 

( v , F - f ) + ( F - f _ ,  1 ) , = 0  (5.13) 

And so uniqueness follows by (5.12). II 

Proof of Theorem 5.1. The existence of a solution of (2.20)-(2.21), 
(1.2)-(1.3) follows as in the proof of Theorem 5.2. It follows from (5.6) that 
QfeL~(@). From Lemma 4.1, applied to the exponential approximations 
i f ,  and arguing as in (5.6) with g-- 1 + ~2, it follows that the solution f is 
of exponential type and satisfies the conclusions of Lemma 4.1. In par- 
ticular ( l + ~ 3 ) Q ( f ) e L l ( ~ )  and (5.1) holds. From here (5.2)can be 
deduced similarly to (5.8) of Theorem 5.2. 

The uniqueness among solutions with /~7 =0  and equality in (2.19) 
are consequences of (2.2) applied to F-_f. This again gives (5.13), thus 
uniqueness using (5.12). | 

Corol lary 5.3. Let f be an exponential solution of (1.1)-(1.3) with 
/~j = 0  and equality in (2.19). Then 

y + f >>- ~ ( )ff + )J .Y{" ( f o, O, O + , v ) 
j = 0  

This follows directly from (5.9). 

822/77/5-6-8 
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C o r o l l a r y  5.4. Keep the assumptions of Theorem 5.1. Assume in 
addition that Q • are Lipschitz operators in 

Ll(t2 x R 3, cp dx d~) where ,p = ( 1 + I~12) 

with v(f) ~ L~or for f e  L ' (~ ,  ~0 dt dx d~), and with 

(Q~, 1 ) =  (Qf,, ~ 2 ) = 0  (5.14) 

Then the problem (1.1)-(1.3) has a unique exponential solution with 
/1+ = 0  and equality in (2.19). 

Proof. Fix fo and denote the solution of Theorem 5.1 by :R(Q). The 
continuity properties of ~R implied by the proof of Lemma 4.1 prove that 
~o  Q is locally Lipschitz in C([0, T], Ll(t2 x 1~ 3, ~p dx d~)). Existence and 
uniqueness for small T can be established by a contraction fixed-point 
argument. Due to (5.13) and Lemma 4.1, the solution can be extended to 
an arbitrary time interval. 

R e m a r k .  All results of this section are valid for the boundary 
condition 

y + f = K T - f + g  on / '+  

with g prescribed such that (1 + I~ l : )g~L ~+. 

6. THE B O L T Z M A N N  E Q U A T I O N  

In this section we consider the Boltzmann equation for the full class of 
collision operators studied in ref. 4 and with 0t2 of Lyapunov type. The 
results of ref. 1 are generalized to the case of varying boundary temperature 
and unbounded velocities. For that extension some energy control at the 
boundary seems necessary. Here we assume (Ko)-(K4). 

Theorem 6.1. Assume that 

(l+l~lZ)fo,  fologfo~Z'(g2xff~3), fo>~O 

Then there exists an exponential solution (Definition2.2) of (1.1)-(1.3) 
satisfying 

fcC([O,T],LI(S'-2xIR3), f~>0, ( f ,  1 ) , =  ( fo ,  1)o 

(1 + 4 ~ 1 2 ) y + f ~ L  1 • (6.1) 

s u p [ ( f ,  l n f ) , + ( f , l r 1 6 2 1 7 7  (6.2) 
t>>- T 
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Here 

1 f ' f '  

with B + the domain of integration of the angular variable u. 

Proof. Following the approximation scheme of ref. 4, we replace the 
collision kernel B by 

B,, = [1 + n - ' ( . ,  1 ) ] - '  x ( n - - I ~ 1 2 -  I~,l=)(B A n) 

where • is the characteristic function of R +. Let Q,,, Q+, v, be the corre- 
sponding operators with B replaced by B,. Then with ~0(~)= 1 + [~[2, 

By Corollary 5.4 for every n the problem (1.1)-(1.3) with Q f =  Q, f  has a 
unique exponential solution f" with +" P7 =0,  equality in (2.19), and mass 
conservation. Set 

d ~ = {(g, g• g=f ' ,  g+ = X • 1 7 7  "} 

Lemmas 4.1 and 4.2 imply that 

sup{ <g, 1 + 1~12>, + <g, In g>, + <e(g), 1 > 
g ~ g  

+<y-g,l+l~l'->_+<~,+g,l+lr (6.3) 

So d ~ is weak-weak* compact in L I ( ~ ) x . / / •  Thus we may assume that 
( f" ,x•177 ") converges in weak-weak* sense in Ll(~)x. .gt  '• to some 
(f, p:~) (after choosing a suitable subsequence). 

Evidently 14) f satisfies the Boltzmann equation in the interior of ~ and 
with initial value f0. It follows from (6.3) that (6.2) holds, i.e., 

<f, 1 + I~l 2 >, + <f, In f > ,  + <e(f), 1 > ~< C(T) 

And so f(t, .) conserves mass and is continuous from R+ to L l (Ox  R3). 
Also p• the weak* limits in ./r177 of Z•177 satisfy (2.18), since X•177 
satisfy (1.2) and since by (6.3) 

sup<v•  ", 1 + 1~12>• <<.C(T) (6.4) 
n 

The nonintegrability of Q• may influence the trace properties, and is the 
reason we only obtain (2.19). The proof of (2.19) is carried out for pc + and 
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X + y §  The case of P7  and X - y - f  is analogous. Evidently (6.1) follows 
from (2.19) and (6.4). 

Take  ro = (t, x, ~) ~ f '  +, 0 < t < T. Since a(2 is of Lyapunov  type, there 
is an open neighborhood jr" of r o in F § and e > 0  such that R S ( ~ ' ) c ~  
for 0 < s ~< e. It is enough to prove that  

f~ &r~ = dp~ >t y +-f da~ (6.5) 

in sip outside of some subset, provided the Lebesgue measure of that subset 
can be made arbitrarily small. 

For  a.e. r ~ X it holds for all n ~ I~l and all 0 < 6 ~< e that  

(s; s; ) IfgR(s,r)-f"(r)l<~max Q,+#(s,r)ds, Qc#(s ,r)ds  

Now for j >  1 

1 f ' f '  
f ' f '* <~ Jff* + l--@g j ( f ' f  * - f f*)  log ~ * *  

and by (6.3) for all ne /R  

(e(f)", 1 ) <~ C(T) 

Let ~, be the characteristic function of a measurable subset of JV. To  prove 
(6.5), it suffices to prove 

r  

lim sup j If"#(6, r ) - f " ( r ) l  ~' da~ + ~ 0  
6 ~ O n e N  ~.1:" 

for ff's which vanish only on arbitrari ly small subsets of Y .  But this 
follows if 

lim s u p f  ~,da~ + ~ f " ~ ( s , r )  v#(f")(s,r)ds=O 
6 ~  0 ne ; IM ~ I~ 

for such ~,'s. 
For  a.e. 0 < s < e, by averaging 

f (R+d/) # (s)f"~(s) d~ (6.6) 

converges strongly in L l to 

f (R+r # (s) f*(s)  dr 
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Fix s = So with 0 < So < e so that this holds. Also outside of an arbitrarily 
small subset of Y ,  by averaging, 

fs r) aT 

converges uniformly (in r) to 

s v* (f)(r, r) dr 

and the latter is uniformly bounded by 

I~v*(f)(r, r) dr ~< Co< oo 

Let ~ be the characteristic function of such a (big) subset of JV. For 
0 < s < so and n large 

fff"*(s,r)<~qJf"#(so, r) H+(v,,O, so, r)<~Cl~kf"~'(So, r) (6.7) 

By the strong L ~ convergence of (6.6), after removing an arbitrarily small 
set of (t, x) such that (t, x, ~)E JV" for some ~, and letting ~' be the charac- 
teristic function of the rest of Y ,  we have 

f~bqJ'f"#(so, r) d~<~C2<c~, n~N (6.8) 

Also outside of an arbitrarily small subset of JV, 

I2v'~(f)(s, r) (6.9) ds 

can be made arbitrarily small by picking 6 small enough. And so using 
(6.7), we have 

fwO~O' da+ f~ f"*(s,r)v*(f")(s,r)ds 

f '"'"'da+r r)f~v*(f")(s,r)ds ~vW r J ~, O ,  

where by (6.8)-(6.9) the right-hand side can be made arbitrarily small for 
n > no by choosing 6 small enough and then no large enough. This com- 
pletes the proof of the theorem. II 
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7. T H E  BGK E Q U A T I O N  

and 

where 

Set 

Consider the problem (1.1)-(1.3) with Maxwellian diffuse reflection 

Qf = J[f - f (7.1) 

O _ul~ ) J[f= p(2~)-3/203/2 exp ( -  ~-I~ 

p = ( f  I), pu=(f  ~), p(lulZ +O-' )=(f  ICI ~) 

~o~(~) = (1 + Ill )P 
X=X~.Ij= {f: ~ + I/~; rp#f~ L~ 

X + =X~.a  = {f: F • ---} R; gopf~L~177 

X o_  o F �9 - X ~ , a  = {f: ~ R; cpaf~ L~176 

The natural norms in X, X -+, X ~ are 

Ilfll x, = Ilfll L+~r,~, j = + , - , 0  

The aim of this section is to prove that under suitable conditions, the 
problem (1.1)-(1.3) in the present setting has a unique solution in X'~.o 
with fl > 5. 

Let al2 be a Lyapunov surface. Assume that the initial value of fo 
satisfies 

O<~fo~X~ for some f l > 5  (7.2) 

) inf infsup V+((~+)Joff(fo, O,O, 1)+V(fo, O,O,l = p > 0  (7.3) 
t ~ T  .r~l'2 n j 

Here V +(.) = V(0,., 0, 1), and the operators off +, off, and V are defined 
by (5.4), (2.6), and (2.4). Condition (7.3) provides a nonzero lower bound 
for the density p = (f, 1) of a solution of the problem (1.1)-(1.3) with 
Q+ =0,  v= 1. 

Theorem 7.1. Let Q be given by (7.1). Assume that fo satisfies 
(7.2) and (7.3) with IlfoIIxo ~< Co. Then there exists a unique exponential 
solution f of (1.1)-(1.3) in ~ . a  with (g~: =0,  equality in (2.19), and) 

inf inf (f, 1 )/>_p 
t<~T xEI ' I  
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In addition, 

Ilfllx + II?-fll x- + II~'+f IIx+ ~< C(T) (7.4) 

Here C(T) depends only on T,_p, fl, and Co when 

II follx~ ~ < Co 

Two main tools in the proof are the following consequences of ref. 8: 

(i) For every f l>5,  there is C( f l )>0  such that 

II r a Jg f ll L~ ~b <~ C( fl ) II ~P a f ll t.~(~,) (7.5) 

(ii) With 

~r = {f; Ilfll xL., ~< C, inf(f, 1)/> p, f >/0} (7.6) 

there is a constant C(~ r depending on ~r such that 

I[r215 11~02(f-g)llL,,oxa,, for f, g ~ r  

(7.7) 

with C(T) independent o f fo  and Q+, and 

inf inf (f, 1 )/> p 
t<~ T x e . O  

where _p is defined by (7.3). 

By (1.4)-(1.5) 

f + ( r )  = M(r) q(t, x) 

where 
q ( t , x ) = ( f ( t , x , . ) , l ) + ,  r = ( t , x ,  ~) 

(7.9) 

(7.10) 

It follows from (2.5) that if f is the solution of Proposition 7.2, then q 
solves the following equation: 

q = s F(fo, a+) (7.11) 

In the proof of Theorem 7.1 the following result is needed. 

P r o p o s i t i o n  7 . 2 .  Assume that v 1, o + = fo~X~o.~, Q ~X~.~ are 
positive with fl > 5. Then for T >  0, there exists a unique exponential solu- 
tion of (1.1)-(1.3) with/z~ =0,  equality in (2.19), and belonging to X~.~. 
In addition, 

Ilfll x + II?-fllx- + II?+fllx+ ~< C(T)(llfollxo+ T IIa + IIx) (7.8) 
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s q= (J'ff(O, Mq, O, 1), 1)+ 

F(fo, Q + ) =  (JY'(fo, 0, Q+, 1), I)+ 

For our proof of Proposition 7.2, a preliminary study of (7.11) is needed. 
In explicit form ~ and F are given by 

s q~(-t +, r )M~(- t+ , r ) l ,+~ , )< ,exp(- t+( r ) ) [~ .n(x) [  d~ 
. n ( x )  < 0 

F(t~ Q+ )= fr . u ( , - )<  o I f~ ~) l t+(r)>t exp(-t) 

+ f~s+(r Q+ '~(r, r) exp(-T) dr] l~ "n(x)l d~ 

Set s=t-t+(r),  y=x- t+(r)~  for s~ [0 ,  T], y~OI2. The 
variables r ~ (s, y) leads to the following representation of s 

~q., ~. ~ r e' '"s [ S 0 ~ o  o ~.t. x s. y. q.s . . , ~  ] 

where the kernel ~ is defined by 

~(t, x, s, y)= I(x- y) .n(x)l . I ( x - y ) .  n(y)l 

�9 It--sl-d-2M(s,y,(x--y)(t--s) -1) (7.13) 

Since Of 2 is Lyapunov, it follows that 

6(e) : - - i n f l y - x l  > 0  with (9~={(x,~);-el~t>~.n(x)} 

By hypothesis 

So in (_9, 

0 <~ M(t, x, ~) <~ (2~) -ci  exp - ~ I~p 2 

x - y  -a x - y  d+ZM(s,y,~_s)<~C~_ a s ]~_s 

(7.12) 

change of 

(7.14) 

(7.15) 

Next, Eq. (7.11) will be solved. 
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L e m m a  7.3. Assume that f0, Q+ are positive, that (1 + I~l 2) Q+ 
~L1(~), and that F(fo, Q+)EL~176 Then Eq.(7.11) has a 
unique solution in L~ T) x 0D). 

Proof. It is sufficient to consider the case offo,  Q+/>0. Theorem 5.1 
implies that (7.11) has a solution q in Lt((0, T)• Any solution of 
(7.11 ) generates [cf. (2.7)-(2.8)] an exponential solution of ( 1.1 )-( 1.3 ) with 
#~ = 0  and equality in (2.19), and so the uniqueness in L ~ follows from 
Theorem 5.1. Since L~((0, T) x 8s c LI((0, T) x 8s'-2), the uniqueness also 
holds in L ~. 

By (7.14) 

sup sup f 
t E [ O , T ]  .x 'eOO -~1,~1 

J -~  I,~1 = ~ 'n(x)<O 
~< C 

for some ~o > 0 and 0 < ~ ~< ~o. 
Hence 

M • ( - t  4, r)I~ 'n(x)l  de 
< ,~. n ( x )  < 0 

, 
exp - ~-I~Jl 2 d~j<~ 

and so 

I~q(t, x)l ~< �89 [Iqll ~ + C6-J II ds Ioa q(s, y) da,. 

II-~qll ~ ~ �89 Ilqll ~ + c IlqllL'((o.m,• 

Using this and the properties of F(fo, Q 4) together with (7.11), we 
conclude that q e L~ II 

Proof of Proposition 7.2. By (7.12) and H61der's inequality 

II F(fo, Q+ )11 ~ ~< C(T)(llfoll xo + T 110 4 IIx) (7.16) 

with C(T) independent of fo and Q 4. 
By Theorem 5.1 the problem (1.1)-(1.3) has in the present case a 

unique exponential solution in L ~ w i t h / ~  = 0 and equality in (2.19). 
The corresponding q satisfies (7.11). So by Lemma 7.3, q is in L ~ and 

by its proof, 

Ilqll o: ~< C(llqll ~ + IIF(fo, O + )11 o~) (7.17) 

with C independent of fo and Q+. Just as in the proof of Lemma 4.1, we 
have 

[Iqll, <~ C(T)(llfoll, + TIIQ+l[,)<~ f(T)(llfollxo+ T[IO+llx) (7.18) 
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and by (7.8) 

Irfll x~.a ~ C( T)( Ilfoll xO.a + T 11Q + II x~.a) (7.21) 

with C(T) independent o f fo  and Q+. 
Consider for T~< 1 the iteration f ~  =fo ,  f"=~loJCf"-1 for n~> 1. By 

(7.5) 

I l J f " -  111 x~ ~< C(/~)( IIf"- 111 x~ 

and so by (7.8) 

Ilf"llx~..a~f(T)(llfollxo + Tf( f l ) II f"-  ~llx~.,) (7.22) 

In the definition of ~ in (7.6) choose 

C =  2 sup(1 + C(Z)) Ilfollxo 
T~<I 

Take T~< I so small that 

TC( fl) sup(1 + C( T) ) <<. �89 
T<~ I 

By induction it follows from (7.22) that for all n 

[[f"llx~.a~C(T)(llfoflxo.~ + TC(fl) Ilf"-'llx~.a)<,, C (7.23) 

i.e., f " ~  zJ for all n. 
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with C(T) independent o f fo  and Q+. By (7.16)-(7.18) 

Ilqlt ~ ~< C(T)(llfollxo+ T IIO + IIx) 

with C(T) independent o f fo  and Q+. By (7.10) this implies 

IIf + fix+ ~< C(T)(flfollxo+ T IIO + fix) (7.19) 

It follows from (2.4) that 

llT-fllx_+llfllx<~f(T)(llfollxo+llf+lpx++Tlla+llx) (7.20) 

Together (7.19)-(7.20) imply (7.8). 
Using (5.9)-(5.11) and (7.3), we find that the bound (7.9) follows. I 

Proof of Theorem 7.1. Given fo satisfying (7.2)-(7.3), fix _p as 
defined by (7.3). Let f = ~ ( Q  § ) denote the solution of ( 1.1 )-(1.3) accord- 
ing to Proposition 7.2 for given Q+ ~xo~,a. By (7.9) 

inf inf (f, 1 ) >~_p 
t<~v x E I 2  
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By (7.6)-(7.7) the operator ~ '  is a Lipschitz operator on ~r with 
respect to the norm in L~(f2xR 3, q~2dxd~). So by Corollary5.4 the 
problem (1.1)-(1.3) has a unique m-exponential solution in the present 
case. Moreover, f = l i m f "  in L ~ sense, and so by (7.23), fe,.qr hence 

By (7.5), ,tlfcX~,p, and so f is the type of solution in X~.~ 
considered in Proposition 7.2. Hence (7.4) is a consequence of (7.8) and 
(7.5). This concludes the proof of the theorem for the chosen T. By induc- 
tion the theorem holds for all T~< 1, and then for all T <  ~ .  II 
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